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The self-propulsion of a generally deformable body at low-Reynolds-number
conditions is discussed. The translational and rotational velocities of the body relative
to an inertial reference system are presented as surface quadratures using a Lagrangian
‘body-fixed’ shape description. The power dissipated into the fluid is obtained as a
quadratic functional of the surface deformation rate. For symmetric strokes, the net
displacement obtained by the execution of a single deformation cycle is provided by
a functional of the intrinsic swimmer shape and its time derivative.

1. Introduction
In the absence of external force fields, energetic reasoning necessitates that any

rigid body would eventually come to rest when placed in a quiescent viscous fluid.
Such reasoning does not apply for a non-rigid body, which can transfer energy into
the fluid by changing its shape. Such a body (‘swimmer’) may persistently propel
itself relative to the carrying fluid by executing periodic shape deformations using an
internal (e.g. electrical or chemical) energy source. Usually, this motion is achieved by
intentional time-periodic shape deformations of the swimmer (‘strokes’).

When the swimmer is sufficiently small, the fluid motion is governed by the
linear Stokes equations. Self-propulsion in the Stokes regime has received significant
attention (Lighthill 1975; Brennen & Winet 1977; Purcell 1977; Childress 1981; Stone
& Samuel 1996; Magar & Pedley 2005) owing to its relevance to the motion of
micro-organisms. Today, with the rapid advance in miniaturization technology, it has
attracted renewed interest (Becker, Koehler & Stone 2003; Avron, Gat & Kenneth
2004). Given the reversibility of the creeping-flow equations, various properties of
‘Stokes swimmers’ may be deduced without the need to explicitly solve the governing
equations (Purcell 1977). Perhaps the most familiar of these is the ‘Scallop theorem’,
stating that a reversible stroke cannot yield any net displacement. A more general
observation is that swimming in the Stokes regime is described by a purely geometric
process: the net displacement of a swimmer during a stroke is independent of the
rate at which it was executed.

Despite the generality of the above statements, it is still quite challenging to analyse
the locomotion of Stokes swimmers. One encounters difficulties just by trying to
formulate a well-posed self-propulsion problem for the case of arbitrary (that is,
non-infinitesimal) surface deformations. For example, it is not a priori obvious how
to translate the intuitive notions of ‘shape’ and ‘displacement’ into a convenient
mathematical description that would naturally represent the time-periodic body
deformation and allow a tractable analysis of the fluid-mechanical problem. Another
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challenge stems from the conflict between two different formulations of the coupled
swimmer–fluid system: while the flow field is most conveniently analysed using an
Eulerian description, the requisite link between the velocity field and the evolving body
shape requires a Lagrangian description. It is also unclear how to merge the ‘body-
fixed’ shape description with the eventual swimmer’s ‘rigid-body’ motion relative to
an inertial reference system.

Several of these issues were discussed by Shapere & Wilczek (1989), where the loco-
motion problem was formulated using a gauge-field description. With this method, the
net displacement and re-orientation generated by a deformation cycle are provided by
a line integral of a gauge potential, which may in principle be calculated by solving a
boundary-value problem. While this approach is illuminating in addressing the above-
mentioned fundamental concepts, it does not provide operational formulae for the lo-
comotion resulting from arbitrary shape deformations. Indeed, the three-dimensional
examples provided in Shapere & Wilczek (1989) address small deformations from
cylinders and sphere, for which the transformation from the gauge-field formulation
to a well-posed hydrodynamic problem is straightforward; for such shapes, however,
the gauge-field approach does not seem superior to more conventional techniques
(see e.g. Stone & Samuel 1996). In fact, most of the specific systems discussed in
the context of self-propulsion in the Stokes regime involve small deviations from
simple shapes, such as planes (Taylor 1951), cylinders (Blake 1971), and spheres
(Lighthill 1952; Stone & Samuel 1996; Magar & Pedley 2005). For such geometries,
the flow field is calculated analytically using regular perturbation expansions. In these
domain-perturbation analyses, the conceptual issues of proper Lagrangian definition
of a deforming shape become degenerate and may usually be ignored.

In this paper I address these conceptual issues. A geometrically well-posed problem
is formulated using two reference systems: a laboratory system, relative to which
the swimmer propagation is described, and a ‘body-fixed’ system (‘attached’ to the
swimmer) whose translational and rotational motions are not known a priori. Once
the linkage between the two systems is clarified, the hydrodynamics is resolved by
a straightforward use of the Lorentz reciprocal theorem. This procedure provides a
set of differential equations that describes the ‘external’ motion of a swimmer as a
function of its ‘intrinsic’ deformation pattern. This generic approach can illuminate
several properties of Stokes swimming in a broader context than that obtained by
the solution of specific configurations. The focus on arbitrary body deformation
necessitates the translation of intuitive notions such as ‘body shape’ and ‘stroke’
into a convenient well-defined mathematical structure, which should appeal to the
fluid-mechanics community. In a sense, I attempt here to suggest a comparable model
to that obtained by Miloh & Galper (1993) for locomotion in a perfect fluid (see also
Miloh 1991). Indeed, several of the concepts employed by Miloh & Galper (1993) are
found useful in the present analysis. However, the presence of the no-slip condition in
a viscous fluid, which necessitates a Lagrangian description in the delineation of the
swimmer’s surface deformation, implies a qualitative difference which emerges in the
problem formulation stage, even prior to the hydrodynamic analysis: a Lagrangian
formalism is obviously redundant in the analysis of perfect-fluid locomotion, where
the fluid is affected only by velocities which are normal to the surface.

2. Geometry
We address the locomotion of a homogeneous swimmer which deforms its shape

in a prescribed periodic manner. Conceptually, this cyclic motion is described in a
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Figure 1. (a) A schematic body-fixed description of an irreversible and asymmetric
deformation cycle, from t = 0 (left) to t = T (right). This sequence represents the swimmer’s
shape as seen by an observer positioned at S̃. (b) Schematic description of the inertial and
body-fixed coordinate systems.

‘body-fixed’ reference frame S̃ = x̃1x̃2x̃3, in which the swimmer returns to its original
shape after completing a single deformation cycle during a time interval of length T

(which with no loss of generality is assumed to begin at t = 0). A schematic of a such
a cycle appears in figure 1 (a). Owing to the non-rigidity of the body, the term ‘body-
fixed’ is not uniquely defined: a given periodic deformation may be described via
many reference frames. Nevertheless, for our purpose any reference frame relative to
which the body returns to its original shape is sufficient. With no loss of generality, the
origin of the body-fixed coordinate system is assumed to coincide with the swimmer’s
centroid at all times.

When the swimmer is placed in an otherwise quiescent fluid domain, self-propulsion
occurs. It is convenient to describe the swimmer motion in an inertial reference frame
S = x1x2x3 attached to the far-field quiescent fluid. The (time-dependent) domain
possessed by the body is denoted by D(t); the corresponding enclosed volume,
surrounding boundary, and outward unit normal are respectively denoted by V (t),
∂D(t), and n. Conceptually, the ‘rigid-body’ motion relative to S consists of the time
evolution of the swimmer’s position (that is, its centroid position) and orientation
(that is, the orientation of S̃) relative to S. The centroid x̄ is defined by the relation

V x̄ =

∫
D

dV x, (2.1)

with dV being a differential volume element and x a position vector measured from
the origin of S.

To formulate a tractable hydrodynamic problem, the boundary ∂D must be defined
in a convenient matter. This is done by uniquely identifying each point on ∂D with
two parameters, say s1 and s2. Since it is desired to relate the time evolution of
the body surface to the adjacent fluid velocity, it is natural to employ a material
parameterization. Thus, the entity (s1, s2) is chosen to represent a single material
point located on ∂D. The position x = (x1, x2, x3) of this point relative to the inertial
frame S generally evolves with time, say x = F(s1, s2; t). Of course, material points
∂D do not return (in general) to their original position in S following the completion
of a swimming cycle. How then does the above-suggested Lagrangian description
relate to the prescribed periodic deformation in the body-fixed system?

In the terminology of Shapere & Wilczek (1989), the function F describes a
‘located’ shape, whereas the periodic deformation describes an ‘unlocated’ shape. An
unlocated shape constitutes an equivalence class of all geometrically identical located
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shapes, regardless of their position and orientation relative to S. (In the absence
of surrounding fluid, the located and unlocated shapes ‘coincide.’) The requisite
link between the two descriptions relies upon a relative surface description, using
the swimmer’s centroid as a reference point. This description is provided by the
system S̃, which, being attached to the centroid, moves at the (yet unknown) time-
dependent velocity dx̄/dt . If the shape deformation is sufficiently symmetric (cf. § 4),
the swimmer ‘does not rotate’, meaning that S̃ does not rotate.† In general, however,
S̃ rotates relative to S with an angular velocity Ω , which is conveniently interpreted
as the swimmer’s angular velocity. Thus, the three unit vectors of S̃, ẽ1, ẽ2, and ẽ3, are
time dependent. A schematic of the two coordinate systems is provided in figure 1 (b).

It is therefore convenient to define the position vector measured relative to the
centroid,

r = x − x̄, (2.2)

and parameterize ∂D through the collection of the values of r on the boundary, r|∂D .
This Lagrangian description is captured by the definition

f (s1, s2; t) = F(s1, s2; t) − x̄. (2.3)

The respective S̃-coordinates of this function, f · ẽi , are denoted by f̃ i . Using this
formulation, it is now possible to define the underlying concepts of self-propulsion
in a manner consistent with our intuitive notions: a swimming stroke of duration T

is defined as the time evolution of f̃ 1, f̃ 2, and f̃ 3 (corresponding to the unlocated
shape as seen by an observer in S̃) during the interval 0 < t < T . (This evolution
must satisfy obvious continuity conditions with respect to the arguments s1, s2, and
t .) In terms of this Lagrangian description, the velocity of the point (s1, s2) on ∂D is
given by

v =
dx̄
dt

+ Ω × f +
∂ f
∂t

, (2.4)

where ∂ f /∂t denotes the velocity measured in S̃:

∂ f
∂t

= ẽi

∂f̃ i

∂t
. (2.5)

(The Einstein summation convention is employed.) In this definition, the partial
derivatives are performed for fixed s1 and s2 (that is, for a fixed material point).

Only the unlocated shape (or, more precisely, the components f̃ 1, f̃ 2, and f̃ 3) can
be in the direct control of the swimmer during the process of locomotion. (In realistic
situations the swimmer may only control ‘part’ of that shape.) The time evolution of
the centroid position x̄ and the orientation of S̃ are not directly controlled, but are
instead determined by the interaction of the swimmer with the fluid.‡ Both variables
continuously modify the swimmer’s located configuration, measured relative to the
inertial system S.

It should be emphasized that not all continuous time-periodic functions are
admissible candidates for f . Following Miloh (1983), consider the Reynolds transport

† More precisely: it is possible to find S̃ which does not rotate. In principle, S̃ may rotate, but it
must return to its original orientation at the end of the stroke.

‡ Owing to the lack of uniqueness in the definition of S̃, Ω (but not dx̄/dt) depends upon the
specific system S̃ chosen to represent the periodic deformation. However, the net change in the
orientation of S̃ relative to S is independent of this choice.
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theorem applied to the material within the body:

d

dt

∫
D

dV x =

∮
∂D

dA n · vx. (2.6)

The left-hand side of this equation, using (2.1), is

dV

dt
x̄ + V

dx̄
dt

, (2.7)

whereas, using (2.2), the right-hand side of (2.6) becomes

dV

dt
x̄ +

∮
∂D

dA n · vr. (2.8)

Thus, (2.6) is equivalent to

V
dx̄
dt

=

∮
∂D

dA n · vr. (2.9)

Expansion of the integral using (2.4) yields

dx̄
dt

·
∮

∂D

dA nr +

∮
∂D

dA n · (Ω × r) r +

∮
∂D

dA n · ∂ f
∂t

r. (2.10)

The gradient theorem yields V dx̄/dt for the first term in the above expression; use
of Gauss theorem, in conjunction with the relation

∫
D

dV r = 0 (implied by (2.1)–
(2.2)), reveals that the second term vanishes. Thus, the following consistency relation
emerges: ∮

∂D

dA n · ∂ f
∂t

f = 0. (2.11)

This condition implies that the ‘control variable’ f cannot be any arbitrary function,
as would indeed be expected by its geometric construction.

In applications to specific swimmers, the deformation f may also be restricted by
additional constraints, reflecting the internal machinery of the swimmer. For example,
in the case of an incompressible swimmer the Reynolds transport theorem yields∮

∂D
dA n · ∂ f /∂t = 0. Other constraints may represents surface properties (e.g. in-

extensibility). Note however that such additional constraints are system-specific, and
are fundamentally different from the consistency relation (2.11), which is implied by
the mere definition of f .

3. Hydrodynamics
When a shape deformation is performed in a viscous fluid of uniform viscosity µ,

it results in a velocity field u and a corresponding stress field µσ . The flow problem
consists of (i) the Stokes equations; (ii) the no-slip boundary condition, u = v, applied
on ∂D(t); (iii) an attenuation condition at infinity; and (iv) the requirement that at
any moment the fluid exerts zero force and torque (say, about the centroid) upon the
swimmer: ∮

∂D

dA n · σ = 0,

∮
∂D

dA r × (n · σ ) = 0. (3.1a,b)

When seeking a generic description of the swimmer motion, the requisite expressions
must eventually be expressed through the unlocated shape, whose description precedes
that of located shape. Indeed, when the strokes performed by a swimmer are indicated,
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one always implicitly describes them in the body-fixed system, attached to the swimmer
(see e.g. figure 1 a). Accordingly, it is desirable to derive operational equations which
depend only upon the S̃-components of f and ∂ f /∂t .

Owing to the linearity of the governing equations, the flow field is conveniently
decomposed into three separate problems, corresponding to the decomposition of the
surface velocity (2.4): in the first problem, the boundary condition is u = dx̄/dt , in
the second it is u = Ω × r , and in the third u = ∂ f /∂t . These conditions apply
at the time-evolving shape ∂D(t). In all three problems the flow satisfies the Stokes
equations and attenuates at large distances from the swimmer. The flow field in the
first problem is identical to that due to a rigid translation of the swimmer with a
translational velocity dx̄/dt , while that of the second problem is identical to that due
to a rigid rotation of the swimmer with a rotational velocity Ω . The velocity field in
the third problem is generated by a prescribed ‘deformational’ surface velocity over
∂D.

The stress field is accordingly decomposed into three corresponding contributions:
translational, linear in dx̄/dt; rotational, linear in Ω; and deformational, σD , a linear
functional of ∂ f /∂t:

σ = ΣT · dx̄
dt

+ ΣR · Ω + σD. (3.2)

Here, ΣT = σ T ,i ẽi and ΣR = σR,i ẽi respectively denote the translational and rotational
stress triadics (Happel & Brenner 1965). Explicitly, σ T ,i denotes the fluid stress
(normalized with µ) resulting from a translation of the swimmer with unit velocity
along the x̃i-axis. Similarly, σR,i denotes the fluid stress (normalized with µ) resulting
from a rotation of the swimmer with unit velocity about the x̃i-axis. The triadics
ΣT and ΣR are geometric body-fixed functions of the swimmer shape and the fluid
position in space. Specifically, they are independent of the fluid viscosity.

Given the equilibrium relations (3.1), the velocities dx̄/dt and Ω are obtained by
the solution of a mobility problem engendered by the hydrodynamic force and torque,
µFD and µTD , which are generated by the deformational flow part. Using a variant
of the Lorentz reciprocal theorem (Brenner 1964), these entities can be expressed as
the following quadratures (cf. Stone & Samuel 1996):

FD =

∮
∂D

dA n · Σ ′
T · ∂ f

∂t
, TD =

∮
∂D

dA n · Σ ′
R · ∂ f

∂t
. (3.3)

The prime denotes transposition from the right. The particle velocities are therefore
given by the following formulae:

dx̄
dt

= MT · FD + M′
C · TD, Ω = MC · FD + MR · TD. (3.4)

Here, µ−1MT is the translational mobility dyadic, µ−1MR the rotational mobility
dyadic, and µ−1MC the coupling mobility dyadic (Kim & Karrila 1991). The tensors
MT , MR , and MC are geometric body-fixed functions of the swimmer shape, and do
not depend upon its position in S or upon the fluid viscosity.

The term ‘body-fixed tensor’ means that knowledge of the instantaneous swimmer
shape (namely f̃ 1, f̃ 2, and f̃ 3) provides the components of the tensor in S̃: a complete
specification requires also the orientation of S̃, namely the unit vectors ẽ1, ẽ2, and ẽ3.
This is represented mathematically by the following functional relation:

MT = MT [{f̃i(t)}; {ẽi(t)}] (3.5)
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together with similar expressions for MR and MC . The notation f̃ i(t) (i = 1, 2, 3)
signifies the complete set of values taken by f̃ i for all values of s1 and s2 (rather
than the specific value at a given material point).† Since the stress triadics ΣT and
ΣR also depend upon the position of the fluid point on ∂D, they are provided by the
functional dependence

ΣT = ΣT [{f̃i(t)}; {ẽi(t)}; s1, s2], (3.6)

with a similar expression for ΣR .
The formulae (3.3)–(3.4) are still unsatisfactory, since both dA and n depend upon

the evolving swimmer shape. Making use of the definition of a directed area element
in terms of the surface parameterization x = F (s1, s2; t),

dA n = ds1 ds2

∂ F
∂s1

× ∂ F
∂s2

, (3.7)

and noting (see (2.3)) that F can be replaced by f in the above relation, furnishes the
instantaneous specification of the swimmer translational and rotational velocities in
terms of the S̃-components of f and ∂ f /∂t together with the orientation of S̃. The
time-evolution of these vectors is governed by the differential equations

dẽi

dt
= gi(Ω), i = 1, 2, 3, (3.8)

where the explicit form of the functions gi can be obtained by using a specific
parameterization for the orientation of S̃, e.g. Eulerian angles. The conceptual
separation between the prescribed shape and the unknown orientation is explicit
in the functional representations (3.5)–(3.6). Using (3.7), the coupled system (3.4) and
(3.8) completely defines the evolution of the swimmer relative to S, for any arbitrary
body-fixed shape description.

When analysing self-propulsion one is often interested in the efficiency of the
swimmer. Efficiency analyses require calculation of the instantaneous power µP the
swimmer transfers to the fluid:

P =

∮
∂D

dA n · σ · v. (3.9)

This integral is decomposed into three terms according to the representation (2.4):

P =

∮
∂D

dA n · σ · dx̄
dt

+

∮
∂D

dA n · σ · (Ω × r) +

∮
∂D

dA n · σ · ∂ f
∂t

. (3.10)

Since dx̄/dt can be taken out of the first integral, the force-free condition (3.1a)
implies that this integral vanishes. Rearranging the scalar-triple product in the second
integral, in conjunction with the torque-free condition (3.1b), shows that this integral
vanishes too. Upon substitution of the stress decomposition (3.2), the remaining
integral is again decomposed into three terms. Making use of the reciprocal relations
(3.3) then yields

P =
dx̄
dt

· FD + Ω · TD +

∮
∂D

dA n · σD · ∂ f
∂t

.

† The union of f̃ 1(t), f̃ 2(t), and f̃ 3(t) is equivalent to the complete description of the unlocated
shape.
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Finally, substitution of (3.4) furnishes the compact quadratic expression

P = MT : FD FD + MR : TDTD + 2MC : FDTD +

∮
∂D

dA n · σD · ∂ f
∂t

. (3.11)

Here, the Chapman–Enskog convention for the double-dot product is employed.

4. Symmetric shape deformations
This section addresses swimming strokes which possess two mutually perpendicular

planes of symmetry (and, as a particular case, axisymmetric deformations). With no
loss of generality, the x̃1-axis is chosen to lie along the intersection of these two
planes. It is clear by symmetry that FD is directed along the ẽ1-direction and that TD

vanishes. Moreover, for such symmetric shapes it is known (Happel & Brenner 1965)
that MT has the diagonal structure

MT = M1 ẽ1 ẽ1 + M2 ẽ2 ẽ2 + M3 ẽ3 ẽ3, (4.1)

while MC has the form M23 ẽ2 ẽ3 + M32 ẽ3 ẽ2 (implying that MC · FD = 0). Thus, (3.4)
reveals that at each moment the swimmer translates in the x̃1-direction and does not
rotate. Since the axes x̃i (i = 1, 2, 3) retain their original orientation relative to the
fluid, they are conveniently assumed parallel to xi . The single-cycle displacement along
the x1-axis, d = de1, is obtained via integration of (3.4) over one period, 0 < t < T :

d =

∫ T

0

dt MT [ f (t)] · FD[ f (t)].

(Since the system S̃ retains it original orientation, the trivial dependence upon its three
unit vectors is suppressed, and the set {f̃i(t)} can be denoted by f (t).) Substitution
of (3.5)–(3.7) and use of (4.1) in conjunction with the definition of ΣT provides the
following expression for the scalar displacement d:

d =

∫ T

0

dt M1[ f (t)]

∫ ∫
ds1 ds2

(
∂ f
∂s1

× ∂ f
∂s2

)
· σ T ,1[ f (t); s1, s2] · ∂ f

∂t
. (4.2)

The integral (4.2) presents the displacement of the located shape as a functional of
the shape evolution of the unlocated shape. Since the flow depends both upon body
shape and surface velocity, this functional is nonlinear. Note that d is independent of
the fluid viscosity: this is an artifact of the assumption of a prescribed body shape,
which is independent of the flow. In principle, d may be evaluated for a prescribed
deformation f (s1, s2; t) provided the hydrodynamic kernel σ T ,1 is known for the
entire sequence of body shapes. (The shape-dependent mobility M1 is automatically
furnished by the distribution of σ T ,1 over ∂D.) In principle, the stress distribution
σ T ,1 can be evaluated numerically (Pozrikidis 1992).

Using (4.2), the ‘scallop theorem’ is trivial to prove. Indeed, use of the integration
variable η = T − t yields

d = −
∫ T

0

dη M1[ f (T −η)]×
∫ ∫

ds1 ds2

{
∂ f
∂s1

(s1, s2; T −η)× ∂ f
∂s2

(s1, s2; T −η)

}

· σ T ,1[ f (T − η); s1, s2] · ∂ f
∂η

.

For a reversible change of shape, f (t) = f (T − t), the right-hand side is easily seen to
be −d . Whence d = 0.
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It is also a simple matter now to display the ‘geometric nature’ of Stokes swimming.
Consider two different strokes: the first, f (t), is executed during the time interval
0 < t < T , and results in a displacement d; the second, f ∗(t), is executed over the
time interval 0 < t < T ∗ and results in d∗. If these strokes are geometrically similar,
there exists a monotonic function τ (t), with τ (0) = 0 and τ (T ) = T ∗, such that

f (t) = f ∗(τ (t)) (4.3)

(a simple example is a uniform time-stretch, τ (t) = (T ∗/T )t). Substitution of (4.3) in
(4.2) and use of the integration variable η = τ (t) yields

d =

∫ T ∗

0

dη M1[ f ∗(η)] ×
∫ ∫

ds1 ds2

{
∂ f ∗

∂s1

(s1, s2; η) × ∂ f ∗

∂s2

(s1, s2; η)

}

· σ T ,1[ f ∗(η); s1, s2] · ∂ f ∗

∂η
.

The right-hand side is clearly d∗.

5. Concluding remarks
The locomotion of a deformable swimmer in a viscous fluid has been discussed

for the general case of arbitrary deformations. The body-fixed swimmer shape is
defined using a Lagrangian description, which naturally merges with the flow problem
formulation. The equations that describe the swimmer motion are easy to employ
in various applications, as they only require the proper delineation of the swimmer
intrinsic deformation. This description is rendered ‘purely intrinsic’ by a consistency
relation, which eliminates the translational degree of freedom in the specification
of the unlocated body shape. Moreover, the hydrodynamic data which reflect the
swimmer resistance to the shape deformation are presented in a convenient way, as
body-fixed tensors which can be considered to be known for a given body shape
(even if their actual calculation can be computationally demanding).

The underlying idea behind the analysis in this paper is the arbitrary decomposition
of the motion into a periodic shape deformation and a rigid-body motion. Naturally,
a question arises: is there a physically meaningful way to uniquely decompose the
velocity of the swimmer surface into translation, rotation, and deformation? In his
analysis of locomotion in a perfect fluid, Miloh (1983) (see also Miloh & Galper 1993)
employed such a well-defined decomposition, by attaching the rotating system to the
principle axes of the deforming body. In that decomposition, the ‘pure deformation’
velocity ∂ f /∂t is found to satisfy (in addition to (2.11)) the following kinematic
constraints: ∮

∂D

dA n · ∂ f
∂t

xixj = 0, i �= j = 1, 2, 3. (5.1)

Unfortunately, this decomposition does not appear suitable for the motion in a viscous
fluid: consider the rotation of a sphere about its centre – a motion that trivially satisfies
(5.1). In the present context, however, it cannot qualify as ‘net distortion’ with no
rotational component. The incompatibility of Miloh’s decomposition with the present
Lagrangian formulation, as demonstrated by this rotation example, is attributed to
the no-slip boundary condition, which applies in a viscous fluid: in a perfect fluid such
rigid-body rotation would not affect the flow field, and would therefore constitute a
dead degree of freedom.
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The decomposition of the swimmer’s shape is more than a mere technicality: it
also handles a critical separation between the internal body movements, presumably
controlled (via an internal mechanism) by the body, and the external movements,
which result from interaction with fluid. This separation can be appreciated by
imagining the swimmer to be isolated, unable to interact with any other body
(and, specifically, with a surrounding fluid): momentum conservation principles then
prevent the swimmer from modifying its centre of mass – regardless of the internal
mechanism that affects the shape. Defining the intrinsic shape deformation via a
relative description is consistent with this constraint. For Stokes flows, at which
inertia is negligible, these momentum arguments may appear superficially confusing.
However, the strict connection between Newton’s second law and the centre-of-mass
position of an isolated system is universal, and is independent of the rheological
properties of the fluid in which the body is eventually placed!
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